Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.


QTRS
  ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
top(ok(X)) → top(active(X))
Used ordering:
Polynomial interpretation [25]:

POL(active(x1)) = 1 + 2·x1   
POL(f(x1, x2)) = 1 + 2·x1 + x2   
POL(g(x1)) = x1   
POL(mark(x1)) = x1   
POL(ok(x1)) = 2 + 2·x1   
POL(proper(x1)) = x1   
POL(top(x1)) = x1   




↳ QTRS
  ↳ RRRPoloQTRSProof
QTRS
      ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
Used ordering:
Polynomial interpretation [25]:

POL(active(x1)) = 2·x1   
POL(f(x1, x2)) = 2·x1 + 2·x2   
POL(g(x1)) = 2·x1   
POL(mark(x1)) = 2 + x1   
POL(ok(x1)) = 1 + 2·x1   
POL(proper(x1)) = x1   
POL(top(x1)) = x1   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
QTRS
          ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
proper(g(X)) → g(proper(X))
Used ordering:
Polynomial interpretation [25]:

POL(active(x1)) = 1 + 2·x1   
POL(f(x1, x2)) = 2 + x1 + x2   
POL(g(x1)) = 1 + x1   
POL(proper(x1)) = 2 + 2·x1   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
QTRS
              ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

proper(f(X1, X2)) → f(proper(X1), proper(X2))

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

proper(f(X1, X2)) → f(proper(X1), proper(X2))

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

proper(f(X1, X2)) → f(proper(X1), proper(X2))
Used ordering:
Polynomial interpretation [25]:

POL(f(x1, x2)) = 2 + x1 + 2·x2   
POL(proper(x1)) = 2·x1   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
QTRS
                  ↳ RisEmptyProof

Q restricted rewrite system:
R is empty.
Q is empty.

The TRS R is empty. Hence, termination is trivially proven.